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Abstract

One method for verification of numerical solutions in heat transfer uses exact solutions for multi-dimensional

parallelepipeds. The usual solution of these problems utilizes the method of separation of variables for both the steady

and transient parts of the solution; however, this method for the steady-state part often produces solutions that

converge slowly at the boundaries of greatest interest. Steady-state solutions having low convergence are illustrated for

a rectangle with zero prescribed temperatures except one surface having a step change of temperature. Two forms of the

steady-state solution are available and even then difficulties may be encountered. Another method called time-parti-

tioning is used and is shown to have several superior features in the solution of this problem.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Verification of approximate numerical solution

methods is an important process in assuring accurate

and reliable numerical values for numerous heat transfer

problems. Approximate solution methods include finite

difference, finite control volume and finite element

methods. One method for verification uses manufac-

tured solutions [1]; it is important when solving coupled

non-linear partial differential equations, such as in

convection problems. A disadvantage is that sources or

sinks may be needed in this method. A related method

constructs a non-linear solution for a prescribed tem-

perature-dependent variation of thermal properties and

accepts arbitrary boundary and/or initial conditions [2];

this verification solution does not require sources to

complete the solution.
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The verification procedure in this paper provides

solutions (accurate to any desired level) for the linear 2D

or 3D transient heat conduction equation for simple

prescribed boundary and initial conditions and also

volumetric energy generation. In the method described

here, the problems are prescribed and no arbitrary

sources or sinks are needed nor are the boundary con-

ditions arbitrary, as in manufactured solutions. How-

ever, the geometries are simple and the problem is linear.

These solutions are exact for a large number of pre-

scribed problems in steady and transient heat conduc-

tion in plates, rectangles and parallelepipeds.

In obtaining verification solutions, a number of fea-

tures are desirable. These features are now listed for the

cases mentioned above:

1. provide extremely accurate values of the temperature

and the heat flux components,

2. give large improvements in accuracy without exces-

sive computational cost or change in procedure,

3. treat the three basic boundary conditions for finite

and semi-infinite bodies,

4. use the same basic 1D building blocks for all 1D, 2D

and 3D steady and transient cases,
ed.
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Nomenclature

An steady-state component given by Eq. (7b)

B boundary condition modifier in conduction

notation, Section 2

Bi coefficient defined by Eq. (18)

C accuracy constant for maximum value of

exponent, Eq. (8b)

Ck coefficient defined by Eq. (A.2a)

GXIJ Green’s function for boundary conditions of

the Ith and J th kinds, m�1

L length of rectangle in x-direction, m
L1 length of region with T ¼ TW , m
n0 outward pointing normal, m

t time, s

tp partition cotime, s

T temperature, K

T L long cotime temperature component, K

T S short cotime temperature component, K

T L
c:t: complementary transient temperature, K

q heat flux, W/m2

qS short cotime component of heat flux, W/m2

qL long cotime component of heat flux, W/m2

u cotime, t � s, s
wi length defined in Eq. (19), m

W length of rectangle in y-direction, m
x, y coordinates, m

X , Y notation for conduction problem descrip-

tion, Section 2
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5. treat near corners and partial heating on a surface,

6. treat both very small times (semi-infinite behavior)

and large times (steady state),

7. permit extension to other coordinates and

8. allow extension to other related problems such as for

solid body flow [3,4].

Two bonus features provided by the time-partition-

ing method are

1. internal verification of the solution method and

2. internal indication of the accuracy.

In Ref. [5], the time-partitioning solution method

contains most if not all of these features. In particular

the fifth one of treating near corners and partial heating

is not addressed. Also the method given in [5] employs

numerical integration on time while this paper provides

exact integrations for the problem considered. Objec-

tives of this paper include illustrating the power to treat

corners/partial heating and to provide exact integra-

tions. Another objective is to contrast the time-parti-

tioning method with more classical approaches using

separation of variables, which may provide oscillatory

heat fluxes on the heated surfaces.

The time-partitioning method for multi-dimensional

heat conduction problems in Cartesian coordinates is

based on the use of tabulated 1D Green’s functions for a

plate [7]. Three basic boundary conditions are consid-

ered: prescribed temperature (Dirichlet), prescribed heat

flux (Neumann) and prescribed ambient temperature in

a convective condition (Robin). It is convenient to call

them boundary conditions of the first, second and third

kinds, respectively. In so doing, a convenient numbering

system can be devised [7]. With these boundary condi-

tions, nine different combinations can be given for a fi-

nite, 1D plate. For a thermally semi-infinite region, it is
convenient to introduce the boundary condition of the

zeroth kind which is for cases at which no physical

boundary exists such as at infinity. (See further expla-

nation in Section 2.) In order to numerically solve the

transient conduction problem in an efficient way, the

time-partitioning method utilizes two sets of Green’s

functions for the nine basic cases for a finite, 1D plate.

One set comes from the Laplace transform and the other

from the method of separation of variables. The former

is better used for ‘‘short’’ values of u � t � s and the

latter is best used for ‘‘long’’ values of u; this variable is
called ‘‘cotime’’ herein. (‘‘Short’’ and ‘‘long’’ are defined

below with reference to a certain Fourier number.) In

addition to the set of nine finite-body 1D Green’s

functions, many are available for semi-infinite bodies [7].

Exact solutions of steady-state and transient con-

duction problems commonly employ the method of

separation of variables. Although it is a powerful

method, in 2D and 3D problems it may not produce

accurate numerical values at non-homogenous surfaces.

To circumvent this problem, different forms of the

solution are available using variation of parameters,

steady-state Green’s functions and other methods.

However, these may have poor convergence properties

at a homogeneous surface. This paper illustrates these

weaknesses of the classical method of separation of

variables and also presents approaches using time-par-

titioning that do not have these weaknesses.

Appropriate exact methods can be very effective for

obtaining extremely accurate and reliable numerical

values for the temperature and the heat flux compo-

nents. Also, the accuracy can readily be improved with

relatively modest increased computation. For example,

going from 5 digit accuracy to 10 digits in one case

herein requires only twice as much computation while it

is extremely difficult to get 5-digit accuracy using the

finite element and related methods.
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In order to focus attention on the time-partition

methods and convergence problems in the separation of

variables method for transient heat conduction, a simple

steady-state problem of a rectangle with temperature

boundary conditions is first discussed. Several methods

are given for computing the heat flux at a surface with

non-homogenous boundary conditions. In the separa-

tion of variables method for transient heat conduction

problems, transient and steady-state components are

usually present. The steady state is given particular

attention herein because it is much more difficult to

evaluate at the non-homogeneous boundary condition

surfaces than is the transient part. However, the time-

partitioning method simultaneously yields the steady-

state and transient solutions.
2. Separation of variables steady-state solutions

Consider the following 2D steady-state problem,

which is denoted X11B00 Y 11B0ðx5Þ. Here, X and Y
denote the x- and y-directions, respectively; ‘‘11’’ de-

notes boundary conditions of the first kind at both x ¼ 0

and L; B is a boundary condition modifier such that

X11B00 denotes zero temperatures at x ¼ 0 and L; and
Y 11B0ðx5Þ denotes a zero temperature at y ¼ 0 and a

step change in the temperature in the x-direction at the

y ¼ W surface. If the problem is transient and the initial

temperature is zero, we add T0 to the notation. (For

more description of the numbering system, see [7].) The

problem is depicted in Fig. 1 and a mathematical

statement of the problem is

o2T
ox2

þ o2T
oy2

¼ 0; 0 < x < L; 0 < y < W ð1Þ
x=L

  T 

x T(x,0)=0 

 x=0 

 T(x,W)=TW 

x

 x=L1

  y
 T(L,y)=0  T(0, y)=0 

T(x,W)=0 
   0 

 TW

 qy (x,W) 

  y=W

Fig. 1. Steady-state heat conduction problem in a rectangle

with zero prescribed temperatures at all surfaces except a tem-

perature of TW at y ¼ W and 0 < x < L1. Problem notation is

X11B00 Y 11B0ðx5Þ.
T ð0; yÞ ¼ T ðL; yÞ ¼ T ðx; 0Þ ¼ 0

T ðx;W Þ ¼
TW ; 0 < x < L1

0; L1 < x < L

� ð2Þ

At y ¼ W , the temperature is TW from x ¼ 0 to L1 and

zero from x ¼ L1 to L. Two different solutions can be

obtained, one having eigenfunctions in the homoge-

neous direction (which is x in this problem) and one

having eigenfunctions in the y-direction. Ways to derive

these two different solutions include separation of vari-

ables [7], variation of parameters [8] and Green’s func-

tions [9,10].

2.1. Solution using homogeneous-direction (x-direction)
eigenfunctions

The classical separation of variables solution is [7]

T ðx; yÞ
TW

¼ 2

p

X1
m¼1

sin mp
x
L

� � 1� cosðmpL1=LÞ
m

� sinhðmpy=LÞ
sinhðmpW =LÞ

¼ 2

p

X1
m¼1

sin mp
x
L

� � 1� cosðmpL1=LÞ
m

� e�mpW�y
L � e�mpWþy

L

1� e�2mpWL
ð3Þ

which uses the x-direction eigenfunctions. The heat flux

components are

qyðx; yÞL
kTW

¼ �2
X1
m¼1

sin mp
x
L

� � coshðmpy=LÞ
sinhðmpW =LÞ

� 1

�
� cos mp

L1

L

� ��
ð4Þ

qxðx; yÞL
kTW

¼ �2
X1
m¼1

cos mp
x
L

� � sinhðmpy=LÞ
sinhðmpW =LÞ

� 1

�
� cos mp

L1

L

� ��
ð5Þ

Notice in Eq. (3) for y ¼ W that the ratio of the

hyperbolic terms is unity and the denominator contains

m to the first power. As a consequence, Eq. (3) converges

slowly at y ¼ W ; although convergence is not a problem

because the temperature is known there. The conver-

gence of the heat flux components is much worse; notice

that the m in the denominator of Eq. (3) is not present in

Eqs. (4) and (5). Both of these heat flux expressions

oscillate near y ¼ W , the non-homogeneous surface,

which is frequently the most important location.

As m becomes large and y 6¼ 0, the exp½�mpðW � yÞ=
L� term decays slower than the other exponential terms

in the second form of Eq. (3). This term becomes neg-

ligible when the exponent mpðW � yÞ=L is sufficiently

large such as C ¼ 23, (note that e�23 � 1:0E � 10).



0 5 10 15 20 25 30 35 40
Number of terms used in summation

-7

-6

-5

-4

-3

-2

-1

0

1

2

D
im

en
si

on
le

ss
 T

em
pe

ra
tu

re
 a

nd
 H

ea
t F

lu
x

Heat flux

Temperature

Fig. 2. Dimensionless temperature and heat flux for

x=L ¼ 0:25, y=W ¼ 1, L1=L ¼ 0:5 and L=W ¼ 1 using Eqs. (3)

and (4).
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Hence the required number of terms for such small

errors in the series is

mmax ¼ C
L

pðW � yÞ ¼
C
p

L
W

1

1� y=W
; C � 23 ð6Þ

which indicates that as y approaches W the number of

terms can become extremely large.

We note (for y 6¼ W ) that replacing C ¼ 23 in Eq. (6)

by the smaller value of C ¼ 23=2 ¼ 11:5, the error in-

creases to about 1:0E� 5; hence, increasing C by a

factor of two in this case doubles the number of terms

but decreases the expected error by a factor of 1:0E� 5.

This contrasts markedly with finite element and other

methods for which substantial improvements in accu-

racy are very costly. On the other hand, finite element

methods are clearly more powerful for complex prob-

lems.

Fig. 2 shows the dimensionless temperature (given by

Eq. (3)) and the dimensionless heat flux (given by Eq.

(4)) as functions of the number of terms in the series, M ,

for x=L ¼ 0:25, y=W ¼ 1, L1=L ¼ 0:5 and L=W ¼ 1. The

temperature oscillates about unity with decreasing

amplitudes and slowly converges for M > 40. For

example, for 1000 and 1003 terms in the summation, the

computed temperatures are 0.999 and 1.001, respec-

tively. This is not the level of accuracy desired for veri-

fication purposes. The heat flux values oscillate between

about )0.005 and )6.8, which is unsatisfactory.
An
x
W

;
L
W

;
L1

W

� �
¼ 2e�np x

W þ e�np
L1�x
W � e�np

L1þx
W þ e�np

2L�L1�x
W � e�np

2L�L1þx
W � 2e�np2L�x

W

2 1� e�np2LW
� 	 ð8aÞ
2.2. Solution using non-homogeneous-direction (y-direc-
tion) eigenfunctions

The temperature for 0 < x < L1 using eigenfunctions

in the y-direction is [8–10]

T1ðx; yÞ ¼ TW
y
W

(
þ
X1
n¼1

2

np
ð � 1ÞnAn

x
W

;
L
W

;
L1

W

� �

� sin np
y
W

� �)
ð7aÞ

An
x
W

;
L
W

;
L1

W

� �

� sinh np
L� x
W

� ��
þ sinh np

x
W

� �
cosh np

L� L1

W

� ��

� sinh np
L
W

� �� ��1

ð7bÞ

The summation is zero at y ¼ W in Eq. (7a) for

0 < x < L1 and the correct temperature is immediately

given, unlike Eq. (3) which requires many terms at that
surface. However, Eq. (7a) does not converge quickly at

x ¼ 0 and 0 < y < W to the correct value of zero while

Eq. (3) does.

Accuracy in using Eq. (7b) can be improved by

replacing the hyperbolic functions in Eq. (7b) by expo-

nential functions and re-arranging to get
The maximum number of terms required in Eq. (7a) (for

the same accuracy as given for Eq. (6)) is

nmax ¼ max
C
p
W
x
;
C
p

W
L1 � x

� �
; C ¼ 23 ð8bÞ

This equation is found from the determination of which

terms in the numerator of Eq. (8a) have the small-

est magnitude exponents as n becomes large. Note that

convergence is difficult near x ¼ 0 and L1 for all y-values.
For the region of L1 < x < L, the temperature is given

by

T2ðx; yÞ ¼ TW
X1
n¼1

2

np
ð�1Þn

1� cosh np L1
W

� 	
sinh np L

W

� 	
� sinh np

L� x
W

� �
sin np

y
W

� �
ð9Þ

Both Eqs. (7a) and (9) give the correct temperature at

y ¼ W since sinðnpÞ ¼ 0; this is quite different than the

solution given by Eq. (3) but now two equations are

required for the y ¼ W surface.
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The heat flux in the y-direction in the 0 < x < L1 re-

gion using Eq. (7a) is

qy;1ðx; yÞ ¼ �k
oT1ðx; yÞ

oy

¼ � kTW
W

1

"
þ 2

X1
n¼1

ð � 1ÞnAn
x
W

;
L
W

;
L1

W

� �

� cos np
y
W

� �#
ð10aÞ

The heat flux in the y-direction in the region L1 < x < L
using Eq. (9) is

qy;2ðx; yÞ ¼ � kTW
W

X1
n¼1

2ð�1Þn
1� cosh np L1

W

� 	
sinh np L

W

� 	
� sinh np

L� x
W

� �
cos np

y
W

� �
ð10bÞ

Provided x is not near either zero or L1 Eqs. (10a) and

(10b) converge quickly at y ¼ W , which is in contrast to

the oscillatory behavior of Eq. (4) at the y ¼ W surface.

The y-direction heat flux at the y ¼ W surface has

interesting characteristics and is much better treated

using Eqs. (10a, b) than Eq. (4). For L1 ¼ L=2 and

L ¼ W , the heat flux values at y ¼ W are given in Table

1; see columns 4 and 5 which display the dimensionless

heat flux given by Eq. (10a) for x less than L1 and Eq.

(10b) for the other x-values. Column 4 is for the evalu-

ation of these equations using the hyperbolic functions

and column 5 is for the evaluation in terms of the

exponential functions. These columns were obtained
Table 1

Steady-state heat flux in the y-direction at y ¼ W using the y-directio
x
L

L1

L
M

0.010 0.500 891

0.025 0.500 357

0.050 0.500 178

0.100 0.500 89

0.250 0.500 36

0.400 0.500 89

0.450 0.500 178

0.475 0.500 357

0.490 0.500 891

0.499 0.500 8913

0.510 0.500 891

0.520 0.500 446

0.525 0.500 357

0.550 0.500 178

0.750 0.500 36

0.950 0.500 20

0.975 0.500 19

0.990 0.500 18

Maximum number of terms with C ¼ 28 in Eq. (8b). The fourth colum

column is obtained using the exponential forms, Eq. (8a). M ¼numb
while using C ¼ 28 in Eq. (8b) because 12-digit values

are given for some x-values. The heat fluxes are negative
for x less than L1 and positive thereafter. The values start

at negative infinity, increase toward zero and then de-

crease to negative infinity as L1 is approached. For x just
above L1 the heat fluxes tend to positive infinity and then

decrease to zero with increasing x-values. The number of

required terms, M , is indicated in the 3rd column. The

number of terms is 891 when x=L ¼ 0:010 and near the

step values of x=L ¼ 0:490 and 0.510; even more terms

are needed for 0 < x=L < 0:01 and nearer the step (see

the x=L ¼ 0:499 row). Column 4, which uses the hyper-

bolic functions, is both incomplete and inaccurate

compared with column 5 (which uses the exponential

forms). However, Column 4 has many more accurate

components using Eq. (7b) between x ¼ 0 and L1 than a

mathematically equivalent form of Eq. (7b) that we

previously used. The NaN indicates overflow using

Matlab; the italicized digits do not agree with the 5th

column which are accurate.

Another surface of interest is at x ¼ 0 for the heat

flux in the x-direction. The heat flux equation for the y-
direction eigenvalues found from Eq. (7a) is

qx;1ð0; yÞ ¼ � kTW
W

2
X1
n¼1

ð�1Þn
"
� coth np

L
W

� �

þ e�np
L1
W þ e�np

2L�L1
W

1� e�2np L
W

#
sin np

y
W

� �
ð11Þ

Notice that the exponential function group inside the

brackets of this equation goes to zero as n becomes very
n eigenfunction

qyðx;W Þ
kTW =W






hyp

qyðx;W Þ
kTW =W






exp

NaN )63.6884042533
NaN )25.5309928246
)12.8657685254 )12.8657685254
)6.6410002353 )6.6410002353
)3.4195332875 )3.4195332875
)4.4611993066 )4.4611993066
)7.4920012878 )7.4920012878
NaN )13.7954636570
NaN )32.8599176825
NaN )319.3194693818
NaN 30.8439702607

14.9480063829 14.9480168813

11.7743577183 11.7743579577

5.4522878646 5.4522878646

0.5805225102 0.5805225102

0.0785206270 0.0785206270

0.0388287901 0.0388287901

0.0154836899 0.0154836899

n is obtained using the hyperbolic forms, Eq. (7b), and the last

er terms.
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large while the hyperbolic cotangent approaches unity.

Consequently the result given by Eq. (11) continues to

oscillate with increasing n. For that reason, this equation
is not convenient to use whereas Eq. (5) from the

x-direction eigenvalue result does converge if y < W .

From the above discussion, some conclusions can be

made regarding the use of the method of separation of

variables for verification purposes for some 2D and 3D

steady-state conduction problems. Note that the tem-

perature and the heat flux components may be needed at

all surfaces as well as interior points. We conclude that

no one solution is capable of obtaining the possible T ’s
and q’s. In fact, the second formulation itself has two

forms, (for 0 < x < L1 and x > L1). Second, in some

cases special rearrangements are needed such as in going

from Eqs. (7b) to (8a). This violates desired Features 2

and 4, listed above. Third, the method has difficulty near

the x ¼ 0 and x ¼ L1 locations because the number of

terms increases rapidly as shown by Table 1, column 3;

consequently Feature 5 may not be satisfied.

Another comment is now made regarding the fea-

tures. When using the separation of variables method for

transient heat conduction problems with non-homoge-

neous boundary conditions, it is common to find the

steady-state and transient solutions separately. The

transient solution is then usually found by transforming

the boundary value problem to an initial value problem

which uses the negative of the steady-state solution as the

initial condition. If the initial condition has two parts

rather than one, more effort is usually needed to derive

the transient component of the solution. Moreover, if

both solutions are needed, the procedure is further

complicated, thus impacting desired Features 2 and 4.
3. Transient time-partitioning method of solution

The heat flux can be accurately and efficiently ob-

tained for the non-homogeneous surface using the

transient time-partitioning analysis. Consider a transient

version of the above problem with an initial temperature

of zero; the number for this case is X11B00
Y 11B0ðx5ÞT0. Using Green’s functions the temperature

is given by [7, p. 43]

T ðx; y; tÞ ¼ aTW

Z t

s¼0

�
� oGY 11

on0
ðy;W ; t � sÞ

�

�
Z L1

x0¼0

GX11ðx; x0; t � sÞdx0 ds ð12aÞ

which assumes a step change in temperature at y ¼ W to

the constant value of TW from x ¼ 0 to L1. Notice that

the subscripts on the Green’s function G are the same as

in the case number given above. The n0 indicates an

outward pointing normal in the y0-direction; it is eval-

uated at the y0 ¼ W surface. The integration on x0 is only
to L1 since the boundary temperature is non-zero only

from x0 ¼ 0 to L1. As in many transient problems, Eq.

(12a) involves a convolution; the presentation is simpler,

however, if t � s (which we shall call the cotime) is re-

placed by u or

u � t � s ð12bÞ

then Eq. (12a) can be written as

T ðx; y; tÞ ¼ aTW

Z t

u¼0

�
� oGY 11

on0
ðy;W ; uÞ

�

�
Z L1

x0¼0

GX11ðx; x0; uÞdx0 du ð12cÞ

In the time-partitioning method, two mathematically

equivalent expressions are used for the Green’s func-

tions; one is very efficient for ‘‘short’’ values of u while

the other is efficient for ‘‘long’’ values of u. The partition
cotime tp between these two regions is sometimes given

by [5–7]

tp ¼ 0:05min
L2

a
;
W 2

a

� �
¼ 0:05

a
minðL2;W 2Þ ð13Þ

The two regions are given by

short : 0 < u < tp long : tp < u < t ð14Þ

For the 0 < t < tp interval only the short cotime integral

is needed. For the times t > tp, Eq. (12a) is re-written as

a short cotime part, 0 < u < tp, and a long cotime part,

u > tp,

T ðx; y; tÞ ¼ aTW

Z tp

u¼0

�
� oGS

Y 11

on0
ðy;W ; uÞ

�

�
Z L1

x0¼0

GS
X11ðx; x0; uÞdx0 duþ aTW

�
Z t

u¼tp

�
� oGL

Y 11

on0
ðy;W ; uÞ

�

�
Z L1

x0¼0

GL
X11ðx; x0; uÞdx0 du

¼ T Sðx; y; tpÞ þ T Lðx; y; tp; tÞ ð15Þ
3.1. Short cotime form

The derivative and the integral of the Green’s func-

tion are needed in Eq. (15) both for the short and long

cotime forms, T Sðx; y; tpÞ and T Lðx; y; tp; tÞ. Approximate

short cotime forms for the Green’s function needed

above are [7, p. 481, 482]

GS
X11ðx; x0; uÞ �

1ffiffiffiffiffiffiffiffiffiffi
4pau

p e�
ðx�x0 Þ2
4au

�
� e�

ðxþx0 Þ2
4au

� e�
ð2L�x�x0 Þ2

4au þ e�
ð2L�xþx0 Þ2

4au

�
ð16aÞ



J.V. Beck et al. / International Journal of Heat and Mass Transfer 47 (2004) 4243–4255 4249
� oGS
Y 11

on0
ðy;W ; uÞ � W � yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p½au�3
q e�

ðW�yÞ2
4au � W þ yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4p½au�3
q e�

ðWþyÞ2
4au

ð16bÞZ L1

x0¼0

GS
X11ðx; x0; uÞdx0 �

1

2

X6
i¼1

Bi erfc
wiffiffiffiffiffiffiffiffi
4au

p
� �

ð17Þ

where

B1 ¼ �2; B2 ¼ B3 ¼ 1; B4 ¼ 2; B5 ¼ B6 ¼ �1

ð18Þ

w1 ¼ x; w2 ¼ x� L1; w3 ¼ xþ L1; w4 ¼ 2L� x;

w5 ¼ 2L� x� L1; w6 ¼ 2L� xþ L1 ð19Þ

Eqs. (16)–(18) are very accurate for au=L2 less than 0.05

for W ¼ L. For points near or at the non-homogeneous

surface of y ¼ W , only the first term on the right of Eq.

(16b) provides sufficient accuracy as demonstrated be-

low; in that case, the problem is modeled as a semi-

infinite body and is denoted Y 01 rather than Y 11.
Using the first term in Eq. (16b) and (17) in Eq. (15)

gives the short cotime temperature expression,

T Sðx; y; tpÞ � aTW

Z tp

u¼0

W � yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4p½au�3

q e�
ðW�yÞ2

4au

� 1

2

X6
i¼1

Bi erfc
wiffiffiffiffiffiffiffiffi
4au

p
� �

du

¼ TW
1ffiffiffi
p

p
X6
i¼1

Bi
W � yffiffiffiffiffi

4a
p I5

W � yffiffiffiffiffi
4a

p ;
wiffiffiffiffiffi
4a

p ;
1ffiffiffiffi
tp

p
� �

ð20Þ

I5ða; b;HÞ � 1

2

Z H�2

u¼0

1

u3=2
e�

a2
u erfc

bffiffiffi
u

p
� �

du; H ¼ 1ffiffi
t

p

ð21Þ

The I5-function is treated in Appendix A. At y ¼ W , the

values given by Eq. (20) for x > L1 are zero; for

0 < x < L1 the use of Eq. (A.4) gives the correct result of

TW . A significant difference between the above analysis

and that in [5] is that the integral in Eq. (20) is evaluated

exactly rather than using numerical integration. We note

that Eq. (20) is evaluated with a known truncation error

rather than a quadrature which often uses a heuristic

termination.

3.2. Long cotime form

The long cotime forms analogous to Eqs. (16a,b) and

(17) are [4, p. 482, 483]

GL
X11ðx; x0; uÞ ¼

2

L

X1
m¼1

e
�ðmpÞ2 au

L2 sin mp
x
L

� �
sin mp

x0

L

� �

ð22aÞ
� oGL
Y 11

on0
ðy;W ; uÞ ¼ � 2p

W 2

X1
n¼1

e
�ðnpÞ2 au

W 2nð�1Þn sin np
y
W

� �
ð22bÞZ L1

x0¼0

GL
X11ðx; x0; uÞdx0 ¼

2

p

X1
m¼1

e
�ðmpÞ2 au

L2
1

m
sin mp

x
L

� �

� 1

�
� cos mp

L1

L

� ��
ð23Þ

Though these equations are exact for all times, they are

used here only for long cotimes, to take advantage of

their convergence properties.

Introducing Eqs. (22b) and (23) into the T Lðx; y; tp; tÞ
portion of Eq. (15) gives

T Lðx; y; tp; tÞ ¼ � 4aTW
W 2

Z t

u¼tp

X1
m¼1

X1
n¼1

e
�k2mnp

2 au
W 2

� Umnðx; y; L;W ; L1Þdu ð24Þ

where

k2mn � m
W
L

� �2

þ n2 ð25aÞ

Umnðx; y; L;W ; L1Þ ¼
nð�1Þn

m
sin np

y
W

� �
sin mp

x
L

� �
� 1

�
� cos mp

L1

L

� ��
ð25bÞ

We define the ‘‘complementary transient temperature’’

(see subscript c.t.) as

T L
c:t:ðx; y; uÞ ¼

4TW
p2

X1
m¼1

X1
n¼1

1

k2mn
e
�k2mnp

2 au
W 2

� Umnðx; y; L;W ; L1Þ ð26Þ

Then Eq. (24) can be written as

T Lðx; y; tp; tÞ ¼ T L
c:t:ðx; y; tÞ � T L

c:t:ðx; y; tpÞ ð27Þ

Using the same criterion used in Eq. (6), the number of

terms can be found by restricting exponents in Eq. (26)

so that

m
W
L

� �2
"

þn2
#
p2 au

W 2
¼ m

L=ðp
ffiffiffiffiffi
au

p
Þ

� �2

þ n
W =ðp

ffiffiffiffiffi
au

p
Þ

� �2

6C¼ 23 ð28Þ

The accuracy constant C can be 23 and other values as

shown below. Using Eq. (28), the total number of terms

in the summation in Eq. (26) can be estimated by com-

puting 1/4 of the area of the ellipse in terms of m and n;
the area is the product of the semi-axes multiplied by p.
This then gives the approximate number of terms as

# terms � C
4p

LW
au

¼ 23

4p
LW
au

ð29Þ
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Hence the number of terms increases linearly with L, W
and C but decreases with increasing cotime u. Conse-
quently, for a given geometry the number of terms is

decreased when the partition cotime tp is maximized.

A general equation for the temperature in terms of

the short cotime part and the complementary transient

terms is now given. Using Eq. (27) in the second part of

Eq. (15) gives the temperature for t > tp as

T ðx; y; tÞ ¼ T Sðx; y; tpÞ þ T L
: ðx; y; tp; tÞ

¼ T Sðx; y; tpÞ þ T L
c:t:ðx; y; tÞ � T L

c:t:ðx; y; tpÞ ð30Þ

The y-direction heat flux component found from Eq.

(30) is

qyðx; y; tÞ ¼ qSy ðx; y; tpÞ þ qLy;c:t:ðx; y; tÞ � qLy;c:t:ðx; y; tpÞ
ð31Þ

Internal verification of time-partitioning solutions uses

Eqs. (30) and (31) with two or more appropriate parti-

tion times; the calculated temperature (and heat fluxes)

should be very nearly the same for each of these parti-

tion times. We call this the ‘‘partition-time verification

test.’’ See the discussion in connection with Table 2.
4. Steady state from the time-partition method

The steady-state temperature can be obtained from

Eq. (30) by letting the time t go to infinity which causes

the T L
c:t:ðx; y;1Þ term to go to zero (see Eq. (26)); hence

T ðx; y;1Þ ¼ T Sðx; y; tpÞ � T L
c:t:ðx; y; tpÞ ð32aÞ
Table 2

Steady-state heat fluxes using Eq. (37) for the point x ¼ L=4 and y ¼
surface and other surfaces at T ¼ 0, W =L ¼ 1

atp
W 2

x
L

C M q

0.030 0.25 20 45

0.080 0.25 20 15

0.020 0.25 23 81

0.030 0.25 23 52

0.040 0.25 23 39

0.050 0.25 23 30

0.060 0.25 23 24

0.080 0.25 23 19

0.250 0.250 23 4

0.030 0.250 26 60

0.080 0.250 26 20

0.030 0.49 23 52

0.040 0.49 23 39

0.050 0.49 23 30

0.080 0.49 23 19

0.030 0.499 26 60 )
0.080 0.499 26 20 )
In words, this equation states that the steady state for

this problem is the short cotime temperature minus the

complementary transient temperatures, both evaluated

at the same partition cotime. Similarly for the steady-

state heat flux, we can write

qyðx; y;1Þ ¼ qSy ðx; y; tpÞ � qLc:t:;yðx; y; tpÞ ð32bÞ

Using this relation provides insight into the time-

partitioning computational process. For example, the

‘‘same’’ answer should be obtained as the partition co-

time is changed. Recall that the two components of Eq.

(32b) are independent but yet the sum should be the

same. The difference in any values of the heat flux as the

partition cotime is decreased is a measure of the error.

These points are illustrated below.

The heat flux in the y-direction is found from Eqs.

(20) and (24) for the short and long cotime components,

respectively. Using Eq. (20) and Eq. (A.5a), the short

cotime component of the heat flux is

qSy ðx; y; tpÞ �
kTWffiffiffiffiffiffiffiffiffiffiffi
4patp

p e
�ðW�yÞ2

4atp

�
X6
i¼1

Bi
2wi

ffiffiffiffiffiffiffiffiffiffiffi
atp=p

p
ðW � yÞ2 þ w2

i

e
�

w2
i

4atp

"

� erfc
wiffiffiffiffiffiffiffiffiffi
4atp

p
 !#

ð33Þ

which is valid for all x- values in 0 < x < L. Evaluating
this equation at y ¼ W gives
W for the case of T ¼ TW from x ¼ 0 to L1 ¼ L=2 at the y ¼ W

S
y ðx;W ; tpÞ
kTW =L

qLy;ctðx;W ; tpÞ
kTW =L

qyðx;W ; t1Þ
kTW =L

)4.0239024278 )0.6043691382 )3.4195332896
)3.5326417253 )0.1131115982 )3.4195301271
)4.4737502048 )1.0542169174 )3.4195332875
)4.0239024278 )0.6043691403 )3.4195332875
)3.8099530542 )0.3904197668 )3.4195332874
)3.6901784372 )0.2706451525 )3.4195332847
)3.6160491458 )0.1965159269 )3.4195332190
)3.5326417253 )0.1131115993 )3.4195301260
)3.4209184949 )0.0032417630 )3.4176767320
)4.0239024278 )0.6043691404 )3.4195332875
)3.5326417253 )0.1131115993 )3.4195301260
)33.5138048380 )0.6538871555 )32.8599176826
)33.3163537525 )0.4564360700 )32.8599176825
)33.1935997314 )0.3336820530 )32.8599176784
)33.0115253050 )0.1516121776 )32.8599131275
319.9657792055 )0.6463098235 )319.3194693821
319.4708064789 )0.1513416278 )319.3194648511
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qSy ðx;W ; tpÞ ¼ �k
oT Sðx;W ; tpÞ

oy

� kTWffiffiffi
p

p
X6
i¼1

Bi

wi
ierfc

wiffiffiffiffiffiffiffiffiffi
4atp

p
 !

ð34Þ

For the ierfc function, see Eq. (A.2b). For the region

0 < x < L1; it is convenient to use the relation

1ffiffiffi
p

p
ðL1 � xÞ ierfc

x� L1ffiffiffiffiffiffiffiffiffi
4atp

p
 !

¼ 1ffiffiffi
p

p
ðL1 � xÞ ierfc

L1 � xffiffiffiffiffiffiffiffiffi
4atp

p
 !

þ 1ffiffiffiffiffiffiffiffiffi
patp

p

Using this result and expanding Eq. (34) gives

qSy ðx;W ; tpÞ

� kTw

(
� 1ffiffiffiffiffiffiffiffiffi

patp
p � 2

x
ffiffiffi
p

p ierfc
xffiffiffiffiffiffiffiffiffi
4atp

p
 !

� 1

ðL1 � xÞ
ffiffiffi
p

p ierfc
L1 � xffiffiffiffiffiffiffiffiffi
4atp

p
 !

þ 1

ðL1 þ xÞ
ffiffiffi
p

p ierfc

L1 þ xffiffiffiffiffiffiffiffiffi
4atp

p
 !

þ 2

ð2L� xÞ
ffiffiffi
p

p ierfc
2L� xffiffiffiffiffiffiffiffiffi

4atp
p

 !

� 1

ð2L� x� L1Þ
ffiffiffi
p

p ierfc
2L� x� L1ffiffiffiffiffiffiffiffiffi

4atp
p

 !

� 1

ð2L� xþ L1Þ
ffiffiffi
p

p ierfc
2L� xþ L1ffiffiffiffiffiffiffiffiffi

4atp
p

 !)
ð35Þ

The various terms in Eq. (35) can be associated with the

treatment of different boundary conditions; four differ-

ent conditions can be described. (1) The term,

term 1 ¼ �1=
ffiffiffiffiffiffiffiffiffi
patp

p
, is for a 1D semi-infinite body with

a constant surface temperature; it is denoted Y 01BT0.
(2) term 1 plus term 2ð¼ �½2=ðx

ffiffiffi
p

p
Þ�ierfcðx=

ffiffiffiffiffiffiffiffiffi
4atp

p
ÞÞ is

for the quarter-infinite region with T ¼ TW at y ¼ W and

T ¼ 0 at x ¼ 0; the number is X10B0 Y 01B1T0. Paren-
thetically we note that term 2 divided by �1=

ffiffiffiffiffiffiffiffiffi
patp

p
is

less than 1:0E � 10 for the Fourier number atp=x2 less

than 0.014. Consequently for x < L1=2 and this Fourier

number less than 0.014, only the Y 01BT0 model in

needed for this problem. (3) Adding the two terms with

L1 � x and L1 þ x includes the effect of the finite iso-

thermal surface temperature of TW ending at L1; this

problem is denoted X10B0 Y 01Bðx5ÞT0. (4) Adding the

final three terms in the summation of Eq. (35) treats the

finite boundary at x ¼ L; the number is X11B0
Y 01Bðx5ÞT0. Another aspect is that Eq. (35) gives neg-

ative infinite heat flux values both as x goes to zero and

also as x approaches L1 from below. As x approaches L1

above, the heat flux values go to positive infinity.

Now the long cotime component heat flux of Eq.

(32b) is needed. Using Eq. (26), the complementary

transient y-direction heat flux is
qLc:t:;yðx; y; uÞ ¼ �k
4TW
p2

X1
m¼1

X1
n¼1

1

k2mn
e
�k2mnp

2 au
W 2

� oUmnðx; y; L;W ; L1Þ
oy

ð36aÞ

oUmnðx; y; L;W ; L1Þ
oy

¼ n2pð�1Þn

mW
cos np

y
W

� �
sin mp

x
L

� �

� 1

�
� cos mp

L1

L

� ��
ð36bÞ

Using Eqs. (35) and (36a) in Eq. (32b), the steady-state

heat flux in the y-direction at y ¼ W is

qyðx;W ;1Þ

¼ �k
oT
oy

ðx;W ;1Þ ¼ qSy ðx;W ; tpÞ � qLc:t:;yðx;W ; tpÞ

¼ kTW

�
� 1ffiffiffiffiffiffiffiffiffi

patp
p þ � 2

x
ffiffiffi
p

p ierfc
xffiffiffiffiffiffiffiffiffi
4atp

p
 !"

� 1

ðL1 � xÞ
ffiffiffi
p

p ierfc
L1 � xffiffiffiffiffiffiffiffiffi
4atp

p
 !

þ 1

ðL1 þ xÞ
ffiffiffi
p

p ierfc
L1 þ xffiffiffiffiffiffiffiffiffi
4atp

p
 !

þ
X6
i¼4

Bi

wi
ffiffiffi
p

p ierfc
wiffiffiffiffiffiffiffiffiffi
4atp

p
 !#)

þ 4kTW
p2

X1
m¼1

X1
n¼1

1

k2mn

� exp �k2mnp
2 atp
W 2

� � oUmnðx;W ; L;W ; L1Þ
oy

ð37Þ

which is valid for all x’s on the y ¼ W surface, not just

for 0 < x < L1. By choosing a sufficiently small partition

time and the appropriate number of terms, 10 or more

digit accuracy can be achieved, as is demonstrated be-

low. For the transient heat flux, the complementary

transient term given by Eq. (36a) for u ¼ t is simply

added to Eq. (37) (see Eq. (31)).

4.1. Example of calculation of heat flux at y ¼ W

Calculation of the steady-state heat flux for

x=L ¼ 0:25, y=W ¼ 1, L1=L ¼ 0:5 and L=W ¼ 1 is now

treated using Eq. (37). The problem can be solved using

the four different short cotime models, each of which is

discussed below Eq. (35). With each using its own

appropriate dimensionless partition cotime, the answers

to this problem for each model agree to about 10 sig-

nificant figures. However, the number of required terms

for a simplified model is greater than a more complete

one. Below, the main attention is given the short cotime

model which explicitly considers all the boundary con-

ditions except that at y ¼ 0. More precisely, Eq. (37) is

used with all the terms in the summation.

Table 2 displays numerical values for this model and

dimensionless partition cotimes from 0.02 to 0.25. Also,

the three values of the accuracy constant C equal to 20,
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23 and 26 are displayed for x=L ¼ 0:25. Abbreviated

results are also given for x=L ¼ 0:49 and 0.499. Columns

5, 6 and 7 in Table 2 give the short cotime component,

the complementary transient component and the steady-

state heat flux, respectively. The last of these is obtained

by subtracting Column 6 from Column 5, as indicated

by Eq. (32b).

Table 2 illustrates the two accuracy-related criteria

utilized in the time-partitioning method. The two criteria

are values of the dimensionless partition cotime, atp=W 2,

and of the C exponent, Eq. (28). The partition cotime is

dependent upon the short cotime expression, Eq. (35); as

the partition cotime is decreased, greater accuracy in the

short cotime of the solution is obtained but more terms

are needed in the long cotime component of the solu-

tion. The C exponent is related to the error in the long

cotime expression, Eq. (36); as it is made larger, greater

accuracy in the long cotime numerical value is obtained

and again the number of terms is increased. The number

of terms in the short cotime part is fixed because the long

cotime part is easier to manipulate and the number of

terms is easily adjusted. Provided the dimensionless

partition cotime is small enough and C is large enough,

the numerical values of steady-state heat flux are accu-

rate to the number of digits given; notice that the C ¼ 23

and 26 value for the smallest dimensionless partition

cotimes agree with the one for x=L ¼ 0:25 in Table 1;

namely, )3.4195332875.
The dimensionless cotime is ideally chosen to be

the largest possible to get the desired accuracy. Since the

Y 01 approximation is used for the y ¼ W surface, the

second term of Eq. (16b) is dropped in the above short

cotime analysis because it is not needed for

atp=W 2
6 0:05. This is confirmed by the C ¼ 23 values

for x=L ¼ 0:25 in Table 2; nine significant figure accu-

racy is given by the au=W 2 ¼ 0:05 value (the italicized

digits are inaccurate). For the smaller dimensionless

cotime of 0.04, there is 10 digit accuracy and for even

smaller cotimes, accuracy to 11 digits is given in Table 2

for C ¼ 23. Decreasing C to 20 gives less slightly less

accuracy (to 9 digits) as shown in Table 2 even when the

small partition cotime of 0.03 is used. On the other hand

for the x=L ¼ 0:25 location and C ¼ 26, no changes in

the final answers are given compared to the C ¼ 23

computations.

Table 2 also displays results for x=L ¼ 0:49 and

0.499. The numerical values agree very closely with

those in Table 1. The values for x=L ¼ 0:499 agree to 11

digits and agree to 12 if rounded. In this case, the time-

partitioning solution given in Table 2 for au=W 2 ¼ 0:03
needs 60 terms while the steady-state solution displayed

in Table 1 needs 8913 terms. As the critical locations of

x ¼ 0 or x ¼ L1 at y ¼ W are approached, the steady-

state solution in Table 1 requires many more terms than

away from these locations. In contrast, the number of

terms in the time-partitioning solution in Table 2 is
independent of these locations for the same value of C;
only 60 terms are needed for the C ¼ 26 value and

au=W 2 ¼ 0:03 (60 terms is less than 1% of the 8913

number of terms found using the steady-state solution).

Notice that the short cotime contribution is about

)319.96 while the long cotime portion is about )0.646 so
the long cotime contribution is relatively small in this

case. This is clearly not a close subtraction of numerical

values.

Closer subtractions of values occur when the simple

semi-infinite model is used. The model is the first one

given below Eq. (35) and is �1=
ffiffiffiffiffiffiffiffiffi
patp

p
and has the

notation of Y 01BT0. A small dimensionless partition

cotime is needed, such as 0.0005. For the location of

x=L ¼ 0:25 and C ¼ 26, the 5th and 6th columns corre-

sponding to Table 2 are )25.2313252202 and

)21.8117919327; subtracting the 2nd term from the 1st

term gives the same result as previously obtained of

)3.4195332875. The subtraction did not degrade the

answer in this case. This solution required 4069 terms

and more would be required as the x-location moves

closer to the critical locations of x ¼ 0 or L1. The

potentially large number of terms is a disadvantage of

using this simple model ðY 01BT0:Þ
A unique and powerful feature of the time-parti-

tioning method is the internal verification of the solu-

tion. Another is predicting the accuracy of the solution.

The internal verification principle is that the computed

temperature and heat fluxes should go to constant values

as the partition cotime decreases. These constant values

should be the correct values to as many decimal places

as indicated. Provided the C-value is sufficiently large,

that is exactly what is demonstrated in Table 2. For

example, for C ¼ 23 and x=L ¼ 0:25, reducing the

dimensionless partition cotime has the effect of the

numerical values approaching the accurate value of

)3.4195332875. We note that the two numerical com-

ponents of the solution (5th and 6th columns) are

completely independent. The short cotime and the long

cotime parts have entirely different mathematical forms

and have no common computations. In fact, the two

parts of the solution given by Eq. (37) have two physical

interpretations; the short cotime is for a body semi-

infinite in the y-direction and is denoted X11B00
Y 01Bðx5Þ0T0 while the long-cotime part treats the y ¼ 0

boundary condition and is denoted X11B00
Y 11Bðx5Þ0T0. In our work, this internal verification of

solutions has been repeatedly used and it has been very

helpful and powerful [5,6].

Consider now the point of predicting the accuracy.

Notice for C ¼ 23 and x=L ¼ 0:25 results of Table 2 that

numerical values monotonically improve as the partition

cotimes decrease. The heat flux values for partition co-

times of 0.06 and 0.08 are )3.4195332190 and

)3.4195301260, respectively. Since they agree with the

value of )3.41953, this value is expected to be correct to
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these six digits. This gives an estimate of the accuracy of

the 0.08 partition-time answer. When the values do not

change in the digits displayed, the values should be

accurate to these digits.
5. Transient cases

The time-partitioning method provides transient heat

conduction solutions in a very similar manner as the

steady state is calculated. Table 2, for example, can be

used to obtain transient y-direction heat fluxes for the

point x ¼ L=4 and y ¼ W for the case denoted X11B00
Y 11B0ðx5ÞT0 with the unity aspect ratio. Consider the y-
direction heat flux. Combining Eqs. (31) and (32a) gives

qyðx; y; tÞ ¼ qLy;c:t:ðx; y; tÞ þ qyðx; y;1Þ ð38Þ

which states that the heat flux at a particular location

and time is equal to the complementary component

evaluated at the same location and time plus the steady-

state value. A similar equation can be written for the x-
direction heat flux and the temperature. For the point

mentioned above, we know the value of the y-direction
steady-state heat flux, namely, )3.4195332875 in

dimensionless form. For the dimensionless time of

0.25, this y-direction heat flux is �0:0032417630 þ
ð�3:4195332875Þ ¼ �3:4227750505 in dimensionless

form. Other values can be found in a similar way.

The usage of the words ‘‘complementary transient’’

for the first term in Eq. (38) is relatively recent but an

analogous equation is given by Eq. (3.61) of Ref. [7, p.

56]. (‘‘Analogous’’ is used because T is used in [7] instead

of q.) If the alternative Green’s function solution equa-

tion in [7] is restricted to time-invariant boundary con-

ditions, the complementary transient term in Eq. (38) is

analogous to the T 0 term of Eq. (3.61) and the steady-

state term in Eq. (38) is analogous to the T � term.
6. Comments on features of the time-partitioning solution

The time-partitioning solution for verification satis-

fies most if not all of the desired features given at the

beginning of this paper. These comments are now re-

viewed. Feature 1 is regarding extreme accuracy for the

temperature and the heat fluxes; this is demonstrated

above. Feature 2 relates to large improvements in

accuracy without excessive computational cost or

change in procedure. This is also demonstrated; we note

that using Eq. (29) with the exponent criterion C of 11.5

gives errors about 1:0E� 5 and with C ¼ 23 the errors

are about 1:0E� 10. Then the errors are reduced by

about a factor of 1:0E� 5 while the number of terms in

the double series only increases by about a factor of 2.

For Feature 3, the only finite boundary condition trea-

ted in this paper is the first kind, prescribed temperature.
The basic method has been demonstrated for the other

boundary conditions of the 2nd and 3rd kinds in [5] but

integration over the dummy cotime is required. The

present paper uses an exact integral in the solution.

Some of the required integrals are difficult to obtain but

a number have been obtained by Amos [11] in connec-

tion with this research. Feature 4 is about using the same

basic 1D building blocks for the 1D, 2D and 3D cases.

That is satisfied because they can be used in a multipli-

cative manner for homogeneous plates, rectangles and

parallelepipeds; it is not true for the usual steady-state

solutions using separation of variables. Features 5 and 6

regarding corners and small times are shown herein to

be satisfied. Feature 7, extension to other coordinates, is

not demonstrated but is satisfied particularly for cylin-

drical coordinates. Extension to solid body flow [3,4] has

been demonstrated elsewhere. The two bonus features of

internal verification and indication of accuracy are also

shown in connection with Table 2.
7. Summary and conclusions

Solutions using separation of variables for steady-

state heat conduction problems inmulti-dimensional heat

conduction can require more than one form of the solu-

tion, particularly at the boundaries. These solutions may

be completely satisfactory, particularly if only the steady

state is needed [9,10]. However, for obtaining robust

solutions for verification with transient solutions also of

interest, the time-partitioning method offers some

advantages. As mentioned, more than one form of the

solution may be needed using the steady-state separation

of variables method; two basic forms for 2D problems

and three forms for 3D problems are needed. Even after

obtaining the solutions, special treatment of the hyper-

bolic terms may be necessary. The time-partitioning

method does not have these problems. Near corners and

near discontinuous boundary temperatures, even the

most appropriate steady-state solutionmay require a very

large number of terms and the solution may not clearly

indicate that the heat flux goes to infinity. Again the time-

partitioning method is demonstrated herein to very

effectively treat these conditions for the problem treated.

The time-partitioning method satisfies most if not all

of the desired features for verification cited at the

beginning of this paper. The same method provides

transient and steady-state values for the temperature

and the heat flux components. It is not necessary to have

multiple forms of the steady-state solution. No special

re-arrangement of hyperbolic terms is needed to obtain a

solution. Special integrals [11] have been developed to

aid in evaluating the integrals over the dummy cotime

variable. Powerful and unique features of the time-par-

titioning method are the bonus features of internal ver-

ification and accuracy indication.
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Appendix A. I5-function

The I5-function is (Amos, Folder 5, [11])

I5ða; b;HÞ � 1

2

Z H�2

u¼0

1

u3=2
e�

a2
u erfc

bffiffiffi
u

p
� �

du

¼
Z 1

H
e�a2w2

erfcðbwÞdw;H ¼ 1ffiffi
t

p ðA:1Þ

Both expð�a2w2Þ and erfcðbwÞ are less than unity for

a > 0 and b > 0 and decrease rapidly with increasing w.
For either a2H2 or b2H2 P 23, the I5-function is nearly

equal to zero since expð�23Þ � 1:0E� 10 and

erfcð
ffiffiffiffiffi
23

p
Þ � 1:0E� 11. An infinite series for a6 b is

given by

I5ða; b;HÞ ¼ 1

2d
ffiffiffi
p

p
X1
k¼0

Ck
a2

d2

� �k

Ekþ3=2ðd2H2Þ;

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
C0 ¼ 1; Ck ¼

ð1=2Þk
k!

¼ 1

k!

Yk�1

j¼0

1

2

�
þ j
�

for k ¼ 1; 2; 3; . . .

ðA:2aÞ

Some programs such as Mathematica give the expo-

nential integral for different values of k. For other pro-
grams, a recursion relation for the exponential integral

function is [12,13]

Ekþ3=2ðd2H2Þ ¼ 2

2k þ 1
½e�d2H2 � d2H2Ekþ1=2ðd2H2Þ�

E3=2ðd2H2Þ ¼ 2
ffiffiffi
p

p
ierfcðdHÞ;

ierfcðzÞ ¼ p�1=2e�z2 � zerfcðzÞ
ðA:2bÞ

However, this recursion relation must be used with care.

This recurrence is not stable when the recurrence is

carried forward to an index k close to d2H2. Thus, when

d2H2 is large, the first part of the sequence generates

error. The correct way is to start the recurrence where

the value near the integer part of d2H2 is generated and

recurrence is carried up and down from this index. See

Example 6 at the end of Chapter 5 of Ref. [14].

The Ck and exponential integral in Eq. (A.2a) de-

crease slowly with k but the ða2=d2Þk term decreases

much more rapidly. For a6 b, the ratio a2=d2 is less than

or equal to 1/2. Setting this term equal to 10�10 and

solving for the maximum value of k gives kmax ¼
10= log½1þ ðb=aÞ2�. If b ¼ a, about 33 terms are needed

but if b ¼ 3a, only 10 terms are needed.

For a > b, use [11, p. 5.7]

I5ða; b;HÞ ¼
ffiffiffi
p

p

2a
erfcðaHÞerfcðbHÞ � b

a
I5ðb; a;HÞ ðA:3Þ

For a ¼ b, this equation gives I5ða; a;HÞ ¼ ð
ffiffiffi
p

p
=4aÞ�

erfc2ðaHÞ. For negative values of b, use

I5ða; b;HÞ ¼
ffiffiffi
p

p

a
erfcðaHÞ � I5ða;�b;HÞ ðA:4Þ

If b < 0 and b2H2 > 23, then the I5-function on the right

side of Eq. (A.4) disappears.

It can be shown that the derivative of aI5ða; b;HÞ
with respect to a is

o½aI5ða; b;HÞ�
oa

¼ e�a2H2 b
ða2 þ b2Þ

ffiffiffi
p

p e�b2H2

�
�HerfcðbHÞ

�
ðA:5aÞ

If a is equal to zero, Eq. (A.5a) gives (see Eq. (A.2b) for

ierfc(Æ))

o½aI5ða; b;HÞ�
oa






a¼0

¼ 1

b
ffiffiffi
p

p e�b2H2 � bH
b

erfcðbHÞ

¼ 1

b
ierfcðbHÞ ðA:5bÞ

The derivative of I5ða; b;HÞ with respect to b is

oI5ða; b;HÞ
ob

¼ �1

ða2 þ b2Þ
ffiffiffi
p

p e�ða2þb2ÞH2 ðA:6Þ
Appendix B. Bounds for I5(a; b; ) for a>0, b>0 and

H > 0

Integral I5ða; b;HÞ exists if a or b is equal to zero, but

not both at the same time. One bound is

I5ða; b;HÞ6 I5ða; b; 0Þ ¼
1

a
ffiffiffi
p

p tan�1 a
b

� �
ðB:1Þ

A better bound is found using Mill’s ratio (Ref. [14, p.

298, Eq. (7.1.13)]),

erfcðxÞ6 2ffiffiffi
p

p e�x2

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4=p

p ; xP 0 ðB:2Þ

which is exact at x ¼ 0. Then

I5ða; b;HÞ6 2=
ffiffiffi
p

p

bHþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2H2 þ 4=p

q Z 1

H
e�ða2þb2Þw2

dw

¼ erfcðdHÞ

dðbHþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2H2 þ 4=p

q
Þ

ðB:3Þ
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